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M alaria is a major health concern for many developing countries. Designing strategies for efficient distribution of
malaria medications, such as Artemesinin Combination Therapies, is a key challenge in resource constrained coun-

tries. This paper develops a solution methodology that integrates strategic-level and tactical-level models to better manage
pharmaceutical distribution through a three-tier centralized health system, which is common to sub-Saharan African coun-
tries. At the strategic level, we develop a two-stage stochastic programming approach to address the problem of demand
uncertainty. In the first stage, an initial round of shipments is sent before the malaria season to each local clinic from dis-
trict hospitals, which receive medications from regional warehouses. After the malaria season begins, a recourse action is
triggered to avoid shortages in the form of (i) lateral transshipment or (ii) delayed shipment. The optimal solutions devel-
oped by the strategic model identify small clinic clusters possessing exclusive transshipment policies. Therefore, we
decompose the problem at the tactical level, solving each clinic cluster independently using a Markov decision process
approach to determine optimal periodic transshipment policies. A case study of our proposed distribution system is per-
formed for 290 facilities controlled by the Malawi Ministry of Health. Numerical analysis of Malawi’s distribution system
indicates that our proposed cluster-based decomposition method could near optimally reduce shortage incidents. More-
over, such an approach is robust to challenges of developing countries such as slow paper-based inventory review, uncer-
tain transportation infrastructure, the need for equitable distribution, and seasonal and correlated demand associated with
malaria transmission dynamics.
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1. Introduction

Due to a combination of intense poverty and environ-
mental and local weather conditions, Malawi suffers
from an exceptionally high burden of malaria. Dzin-
jalamala (2009) indicates that all Malawians live at
year round risk for malaria, although incidence peaks
during the December–May rainy season. The World
Health Organization (WHO) (2014) estimated that at
least a third of all medical consultations are malaria
related and a recent Malaria Indicator Survey showed

that more than a third of all Malawians test positive
for recent infections at any given time (see Malawi
Ministry of Health 2012). Malaria spending makes up
a major portion of total expenditures on health in
Malawi, crowding out spending on other conditions.
Despite decades of elimination and control efforts,
malaria remains one of the most common causes of
child morbidity and mortality worldwide. According
to the WHO, there were nearly 207 million suspected
malaria cases in 2012. In addition to imposing an
immense burden on health and welfare, malaria is a
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major impediment to the economic development of
impoverished nations (see Gallup and Sachs 2001,
Malaney et al. 2004). Thus, for the past decade,
malaria control and elimination have been a priority
for international and domestic health agencies, non-
governmental organizations (NGOs), and health min-
istries. Malaria is a treatable disease, and prompt
administration of medicines for uncomplicated
malaria such as Artemesinin Combination Therapies
(ACTs) can prevent the most severe outcomes. How-
ever, stock outs of essential medications are common
in developing countries, particularly those facing dis-
proportionate malaria burdens (see PMI 2014, Sudoi
et al. 2012). Problems in regional supply chains have
been noted as a major barrier to timely and efficient
distribution of malaria medications to meet local
demand (see Bateman 2013, Daniel et al. 2012, Tetteh
2009).

1.1. Malawi’s Existing Health System
Malawi’s public health system is a three-tiered net-
work consisting of central warehouses and regional
hospitals in the first tier, district hospitals in the sec-
ond tier, and primary health centers and local com-
munity clinics in the third tier. Each tier receives
supplies from and answers to the tier above it with
the exception of the central warehouses and regional
hospitals which answer directly to the Ministry of
Health, see Figure 1. Distribution of pharmaceuticals
begins at the Central Medical Stores (CMS) in
Lilongwe, Malawi, which allocate drugs to the regio-
nal hospitals and central warehouses (first tier). First

tier distribution then delivers to district hospitals,
which are in turn responsible for supplying primary
health centers and local community clinics.
In this paper, we employ stochastic programming

and Markov decision models to optimize distribution
approaches and significantly decrease treatment
shortage while limiting transportation costs.

1.2. Operational Challenges
Foster (1991) claims that: (i) proper inventory man-
agement of medications in Africa can reduce costs by
15%–20% and (ii) transportation of drugs and medical
aid is an especially critical factor in Africa. According
to Claeson and Waldman (2000), the efficacy of deliv-
ering health care through such systems has been the
subject of debate for decades. Underdeveloped health
systems that rely on centralized and hierarchical sup-
ply chains with a central authority acting as primary
distributor of goods can suffer from many problems.
Transportation infrastructure is generally poor, fuel

shortages complicate matters and roads are often in
bad condition, especially during the rainy season,
when malaria is most prevalent. Cultural issues and
regional rivalries lead to inequities in access and sup-
ply. This observation is based on one co-author’s on
the ground experience working with malaria in
Malawi.
Some research has focused on strategies that cir-

cumvent, replace, or radically decentralize public
health systems, for example, Gallien et al. (2012);
however, government sponsored distribution systems
remain the most prominent source of medications in
most developing countries, including Malawi and
nearly all sub-Saharan African countries.
In this paper, we explore transportation schemes

that combine both strategic and tactical level opera-
tions to increase the effectiveness of ACT distribution
channels within the public, centralized supply chain
of Malawi. While we study a centralized government
supply chain, these methods can also be applied to
other problems concerning the distribution supply
chains for pharmaceutical products outside of the
public sector, such as those of the NGOs like John
Snow Inc (see http://www.jsi.com/). At the strategic
level, we first develop and solve a large stochastic
program capable of optimizing ACT delivery to all
290 hospitals and clinics that treat malaria in Malawi.
We then use this model to investigate the impact of
transshipment and delayed shipment (where some
inventory is held back at the higher echelon) on both
transportation cost/feasibility and on ACT shortages.
Applying this model to data obtained from the
Malawi Ministry of Health, we find a convenient
structure in the optimal solution to the stochastic pro-
gram, from which the problem can be decomposed
into small clusters of clinics with exclusive

Central Medical 
Storehouse

Regional Storehouses 
(warehouses and 

regional hospitals)

District Hospitals

Local Clinics 

Figure 1 Malaria Pharmaceutical Distribution Network in Malawi
[Color figure can be viewed at wileyonlinelibrary.com]

Parvin, Beygi, Helm, Larson, and Van Oyen: Medication Distribution: Malaria in Malawi
Production and Operations Management 27(4), pp. 774–797, © 2017 Production and Operations Management Society 775

http://www.jsi.com/


transshipment policies. This observation allows us to
implement a tactical method for transshipment using
a tractable Markov Decision Process model, which
could not be solved in the absence of clinic clusters
due to the curse of dimensionality. By integrating
both models, we are able to analyze unique features
of pharmaceutical aid delivery in the developing
world, such as poor road conditions, equity, seasonal-
ity of malaria, and paper-based inventory systems
requiring periodic review. Our approach reduces
shortage by 40%–60% compared to the baseline
model.

2. Literature Review

Literature from a number of areas is relevant to this
paper, including (i) global health and humanitarian
response literature, and (ii) transshipment and multi-
echelon distribution models. In our model, we
consider a two-stage response in the distribution of
medical supplies (as in disaster preparedness) as well
as dynamic periodic lateral (bidirectional) transship-
ment decisions among clinics (the lowest echelon)
based on small clusters of nearby clinics that are iden-
tified by the higher level two-stage model. Our con-
text is distinguished by characteristics that include: a
centralized distribution system, three echelons and a
network of almost 300 stockpoints, non-stationary
demand by month, lost unfilled demand, and hetero-
geneous shipping cost parameters enabling distances
and road conditions to be incorporated in the model.

2.1. Global Health and Humanitarian Operations
Emergency response research tends to focus on broad
public health needs that must be addressed in a rapid
and targeted manner after a period of prior planning,
often involving inventory prepositioning. Published
research regarding disaster preparedness and emer-
gency response is extensive and has been well docu-
mented by several survey papers, including Altay
and Green (2006), Simpson and Hancock (2009), and
de la Torre et al. (2011).
Particularly relevant to our methodology are emer-

gency response models that employ two-stage
stochastic programming. These approaches involve
an initial allocation of resources before a disaster and
subsequent transportation to affected locations after a
large emergency event (see e.g., Mete and Zabinsky
2010, Salmer�on and Apte 2010).
Models of disaster preparedness and emergency

response share similarities with our work; however,
they typically involve rare events with unknown timing
that require a rapid response. The global health oper-
ations literature generally encompasses a broader per-
spective. Kraiselburd and Yadav (2013) claims that
global health supply chains suffer due to lack of

coordination between entities, competing and/or
myopic objectives, and poor supply chain design. Our
paper touches on these areas specifically with respect
to analysis and improvement of ongoing supply chain
operations. Recent work has begun to make the dis-
tinction between ongoing and emergency operations
in global health, including Stauffer et al. (2016), that
implements a stochastic programming model to bal-
ance objectives from both perspectives. Jahre et al.
(2016) also considers ongoing operations and is com-
plementary to our work as the authors consider posi-
tioning of global warehouses and distribution
network construction. Our work functions on ongoing
operations within the context of an existing network.
To place our work within the public-sector supply
chain context, we note that Yadav (2007) provides a
framework for public-sector supply chains involving:
registration, selection, procurement, distribution, and
delivery. We specifically study the area of distribution
and delivery.
From a funding standpoint, both Gallien et al.

(2016) and Natarajan and Swaminathan (2014) con-
sider the impact of funding disbursement on the
effectiveness of prevention and treatment programs,
particularly in Africa. Gallien et al. (2016) finds that
effective (frequent) monitoring of resource usage and
using cash buffers rather than regional stock buffers
can improve performance. While we do not directly
study funding mechanisms, we do analyze the impact
of different levels of funding on supply chain perfor-
mance. Other mechanisms that affect the delivery of
humanitarian operations include earmarked funding,
Besiou et al. (2014), and armed conflict, Jola-Sanchez
et al. (2016). In the case of Malawi, the latter has never
been a major issue and the former does not have
much impact on malaria medication distribution, but
nonetheless are important to consider in the broader
context of global health operations.

2.2. Transshipment and Multi-Echelon
Distribution Models
Our work also contributes to the area of transship-
ment research. Paterson et al. (2011) provides a com-
prehensive survey of transshipment, identifying areas
where additional research is particularly needed.
Among multiple areas in need of development, they
cite the following three: (i) using transshipment to
proactively redistribute/balance the stock with multi-
ple transshipment epochs, (ii) further work on larger
numbers of locations (rather than the typical two or
three), and (iii) larger networks with three or more
echelons. As will be seen, our paper addresses these
areas of need through a combination of modeling, the-
oretical analysis, and numerical analysis.
Traditionally, the literature on transshipment has

generally addressed problems with only two retailers
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in analytical approaches for tractability (see Paterson
et al. 2011 for references). Most of the literature
assumes infinite capacity for replenishment, although
some papers model a finite supply or production
capacity. In our setting, the total amount of medica-
tion available is restricted, having been donated or
sold to the country in large up-front lots—the method
preferred by the ministry. Thus, replenishment costs
are limited to the cost of shipment or transshipment.
A multi-period, multi-location approach is taken in

Robinson (1990), and it shares a number of features
with our model, such as multiple retailers in a multi-
stage optimization setting with random demand and
either backlogging or lost sales. A key feature of this
analysis is time-stationarity of the model at each per-
iod, which is not an appropriate approximation for
our setting. We consider non-stationary demand dis-
tributions over time; therefore, the control policies
become more complex, in part because the multi-
period solution does not reduce to a single-period
solution. Furthermore, the Markov decision process
(MDP) approach taken by this paper would be intract-
able for our 290 facilities; however, we use the opti-
mal solution of our strategic stochastic program to
decompose the network into small clinic clusters. The
resulting cluster-level transshipment problems are
solvable by MDP. We use the cluster transshipment
policies determined via the MDP to derive opera-
tional insights. These include a strong characteriza-
tion of optimal policies having a threshold structure
and performing rebalancing above the threshold.
Herer et al. (2006) extends the multi-period, multi-

location work of Robinson (1990), and it differs from
our work in ways that include maintaining a station-
ary model, and allowing backordering; it also
assumes replenishment from a central supplier in
every period. Rosales et al. (2013) provides a model
consisting of two retailers and uses simulation to
study the impact of model parameters (e.g., cost,
lead-time, and demand uncertainty) on both a trans-
shipment model and an allocation system structure—
shipment from a centralized depot. This work also
addresses the issue of geographical demand correla-
tion, which often is raised in practical settings. As
intuition would suggest, positive correlation in
demand across suppliers reduces the benefits of trans-
shipment. Intuition and experience with malaria and
its mechanisms suggest that positive correlations can
be expected across clinics close to each other, cap-
tured in both our stochastic programming and MDP
models.
Rottkemper et al. (2012) provides a mixed-integer

programming approach to minimize a shortage and
operational costs under demand uncertainty in the
context of humanitarian operations. They use data
from clinics in Kayanza province in Burundi to

illustrate the effectiveness of their approach. Since the
size of our problem is much larger, we construct a
more scalable approach. Our paper aligns with
Rottkemper et al. (2012) in demonstrating that trans-
shipments can significantly reduce the unsatisfied
demand at slightly increased overall cost. In addition,
we argue that allowing transshipment actions can
result in higher robustness against poor road condi-
tions—an inherent characteristic of distribution prob-
lems in the developing world.
A main modeling contribution to the transshipment

literature is the integration of both the strategic and
tactical levels by combining a stochastic programming
approach with a MDP approach. Previous work tends to
consider one or the other. This integration is facili-
tated by the identification and use of the special geo-
graphical clinic clustering structure resulting from the
optimal solution of the strategic model to decompose
the country-wide distribution problem into tractable
subproblems that could be solved using MDP.
Other contributions stem from the unique features

of our application area: distribution of pharmaceuti-
cals in the developing world. First, the situation in
this problem differs from conventional inventory
models which tacitly assume an environment of ongo-
ing production and consumption. However, in very
poor countries such as Malawi, pharmaceutical sup-
plies are often donated annually in advance of that
year’s malaria season with mid-season replenishment
being uncommon. This lack of ongoing and pre-
dictable supply causes distribution and transship-
ment to behave differently from traditional contexts.
Second, we analyze equitable solutions addressing
perceived fairness, which is not typically a considera-
tion in traditional transshipment literature. Third, we
capture the impact of geographically and temporally
correlated demand and seasonality of demand reflect-
ing the characteristics of malaria. Fourth, we explore
the impact of transshipment frequency, which is
important because many developing world clinics use
time consuming paper-based inventory systems and
cannot engage in near-continuous review that elec-
tronic monitoring systems prevalent in retail and
warehousing would allow. Fifth, we explore the
impact of poor road conditions along certain trans-
portation routes that are common, particularly during
the rainy season (and consequently the peak malaria
season), when roads can get washed out.

3. Strategic Optimization Model for
Medication Distribution in a
Public-Sector Supply Chain

In this section, we develop a strategic-level opti-
mization for distributing malaria medications
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throughout a centralized, national distribution net-
work. We first present a baseline that performs all
distribution up front and has no recourse mecha-
nism to adapt to randomness in the demand. This
baseline is similar to the current state of distribution
policies in many developing countries. We then pre-
sent two recourse models that represent operational
innovations that can better help the centralized pub-
lic sector supply chain react to uncertainty: delayed
shipment and transshipment. Each model has
benefits and drawbacks, but both should be poten-
tially implementable without significant additional
investment.

3.1. Baseline Model without Recourse
To demonstrate the effectiveness of incorporating
demand uncertainty in distribution decisions, we
first define a “baseline” model as a surrogate for the
current state of ACT distribution in Malawi. Note
that this baseline model already represents an
optimization with respect to the current practice.
However, it is naive in the sense it makes all trans-
shipment decisions before demand is realized by
minimizing expected transportation costs and short-
age penalties without any real time updates and
recourse actions. Specifically, the model assume
knowledge of future demand scenarios and their
probabilities, but cannot react to any particular real-
ization. Notation for all the distribution models that
follow is given in Table 1.
The main decision variable in the baseline model,

xij, corresponds to the number of malaria treatments
transported on arc (i, j). All distribution decisions
are made at the same time based on an historical esti-
mate of demand. An auxiliary variable, zsj is intro-
duced to capture the shortage of malaria treatments
in clinic j under scenario s, in which a demand of dsi
is realized for clinic i. The min-cost flow formulation

introduced in Equations (1)–(7) represents the base-
line model.

min
X

ði;jÞ2A
cijxij þ

X
s2S

X
i2C

pspiz
s
i ð1Þ

s.t. X
j:ðm;jÞ2AR

xij � r ð2Þ

X
j:ðm;jÞ2AR

xij ¼
X

j:ðj;iÞ2AD

xji 8i 2 R ð3Þ

X
j:ði;jÞ2AD

xij ¼
X

j:ðj;iÞ2AC

xji 8i 2 D ð4Þ

X
j:ðj;iÞ2AC

xji þ zsi ¼ dsi 8i 2 C; 8s 2 S ð5Þ

xij � 0 8ði; jÞ 2 A ð6Þ

zsi � 0 8i 2 C; 8s 2 S: ð7Þ

The objective function (1) minimizes total cost,
comprised of transportation costs and shortage pen-
alty and (2) constrains the amount distributed to be
at most the available supply (r). Constraints (3) and
(4) represent the flow conservation constraints for
regional warehouses to district hospitals and district
hospitals to local clinics respectively. The left-hand-
side of Equation (5) represents the total flow of ACTs
into local clinic i plus the shortage in that clinic
under scenario s (zsi ). The right-hand-side corre-
sponds to the total demand of clinic i under scenario
s (dsi ).

3.2. Two-Stage Stochastic Formulation
The models in this section contrast with the baseline
model in the sense that additional demand informa-
tion becomes available and recourse actions are trig-
gered in the second stage. In the first stage, the Malawi
Ministry of Health would decide how many ACTs to
send to each facility before the malaria season begins.
In the second stage, the actual demand is realized and
the Ministry can take recourse actions to address the
supply and demand mismatch. Here we consider two
potential recourse actions: (i) transshipment and (ii)
delayed shipment.
In the transshipment model (section 3.3), all the

ACTs are distributed among all the facilities (tier 1, 2,
and 3) in the first stage. In the second stage, transship-
ment of ACTs between facilities occurs to adjust
inventories in light of new demand information. In
the delayed shipment model (section 3.4), an initial
delivery of ACTs is distributed to the clinics, but some
is held back at the higher tier. During the malaria

Table 1 Distribution Model Notation

N Set of nodes consisting of the central medical storehouse (m),
regional storehouses (R), district hospitals (D), and local
clinics (C)

AR Subset of arcs connecting the central warehouse to regional
warehouses

AD Subset of arcs connecting regional warehouses to district
hospitals

AC Subset of arcs connecting district hospitals to local clinics
AT Subset of transshipment arcs connecting local clinics to

one another
A Set of arcs (A ¼ AR [ AD [ AC [ AT Þ
S Set of demand scenarios
ps Probability of scenario s where s 2 S
pi Penalty of one unit of treatment shortage in clinic i
cij Cost of transporting one unit of treatment on arc (i, j)
r Total available supply of treatments
ds
i Demand of local clinic i under scenario s where i 2 C and s 2 S
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season, a better estimate of the demand is realized
and a second round of shipments is delivered.
Delayed shipment is less cost effective, but from an
implementation standpoint it has the political benefit
of not needing to take stock from one clinic to give to
another. Transshipment, on the other hand, is more
cost-effective but harder to centrally control. Note,
however, that according to Kiczek et al. (2009) trans-
shipment already occurs on an ad hoc basis in Malawi
and in a more structured manner in neighboring
Zambia (Mtonga 2010).
Figure 2 illustrates the timeline of events for the

two-stage stochastic models. Note that the recourse
actions are not necessarily done all at once. Instead,
the transshipments or delayed shipments are made
throughout the malaria season as needed. Therefore,
the recourse decisions considered here are aggregate-
level surrogates for the actual periodic adjustments in
the inventory level of each facility.

3.3. Two-Stage Transshipment Model
A necessary assumption for this stochastic program-
ming formulation is that transshipment occurs imme-
diately and instantaneously (as in a continuous
review system) in response to every stock out. This
approximation is acceptable for the planning stage
that the stochastic program represents. We assume a
set of scenarios (S) where each scenario, s 2 S is real-
ized with probability ps. Under scenario s, the realized
value of demand for clinic i is dsi . The first-stage prob-
lem has objective:

min
X

ði;jÞ2A
cijxij þQ; ð8Þ

and constraints (2)–(4) and (6) from the baseline
model. The expected recourse function, Q, is given by:

Q ¼ min
X
s2S

ps

 X
ði;jÞ2AC[AT

cijy
s
ij þ

X
i2C

piz
s
i

!
ð9Þ

s.t.X
j:ði;jÞ2AC

ysij �
X

j:ðj;iÞ2AD

xij �
X

j:ði;jÞ2AC

xij 8i 2 D; 8s 2 S ð10Þ

X
j:ðj;iÞ2AT [AC

ysji �
X

j:ði;jÞ2AT[AC

ysij þ zsi � �
X

j:ðj;iÞ2AC

xji þ dsi

8i 2 C; 8s 2 S ð11Þ

ysij � 0 8ði; jÞ 2 AT [ AC; 8s 2 S ð12Þ

zsi � 0 8i 2 C; 8s 2 S: ð13Þ

The decision variable ysij corresponds to the aggre-
gate transshipment of ACTs from facility i to facility j
under scenario s throughout the malaria season. Equa-
tion (9) minimizes the expected cost of the second
stage—transshipment cost plus shortage penalty—
where zsi represents shortage of medications in clinic i
under scenario s. Equation (10) ensure that the second
round of shipments from district hospitals to local clin-
ics (

P
j:ði;jÞ2AC ysij) do not exceed the available ACTs left

from the first stage (
P

j:ðj;iÞ2AD xij �
P

j:ði;jÞ2AC xij). Equa-

tion (11) capture the concept that the net transshipment
plus shortages at clinic i under scenario s (LHS) should
exceed residual demand (demand minus initial alloca-
tion of ACTs from stage 1) at clinic i under scenario s
(RHS). Note that the value of first-stage decisions (xij)
is known in the second stage, therefore

P
j:ðj;iÞ2AD xji is a

constraint here. Thus, we re-arrange terms in Equation
(11) such that decision variables are on the left-hand-
side and the known values are on the right-hand-side.

3.4. Two-Stage Delayed Shipment Model
In the delayed shipment model, some ACTs are
reserved at a higher tier for shipment after the start of
the malaria season. The first-stage problem has an
identical formulation to the transshipment model.
The expected recourse function, Q, is given by:

Stage 1: Malaria 
treatments are 
distributed to 
facili�es.

Malaria season begins and the 
demand scenario is realized

Stage 2: During the malaria 
season, treatments are 
transshipped between 
facili�es to sa�sfy demand

Malaria SeasonPlanning Period

Stage 1: Ini�al round 
of treatments is 
distributed amongst 
facili�es

Malaria season begins and the 
demand scenario is realized

Stage 2: During the malaria 
season, another round of 
treatments is  shipped to local 
clinics from district hospitals

Malaria SeasonPlanning Period

(a) (b)

Figure 2 Event Timelines for Two-Stage Stochastic Models
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Q ¼ min
X
s2S

ps

 X
ði;jÞ2AC

cijw
s
ij þ

X
i2C

piz
s
i

!
ð14Þ

s.t.X
j:ði;jÞ2AC

ws
ij �

X
j:ðj;iÞ2AD

xij �
X

j:ði;jÞ2AC

xij 8i 2 D; 8s 2 S ð15Þ

X
j:ðj;iÞ2AC

ws
ji þ zsi � �

X
j:ðj;iÞ2AC

xji þ dsi 8i 2 C; 8s 2 S ð16Þ

ws
ij � 0 8ði; jÞ 2 AC; 8s 2 S ð17Þ

zsi � 0 8i 2 C; 8s 2 S; ð18Þ

where ws
ij denotes the amount of ACTs shipped

from district hospital i to clinic j throughout the
malaria season. The objective function (14) mini-
mizes the expected transportation costs and shortage
penalties. Equation (15) is essentially similar to (10)
from the transshipment model, allowing some
inventory to be kept at the district hospital. This
means that the transshipment model does have a
similar capability to delayed shipment. In most
cases, however, the amount of inventory stored at
the district hospital in the transshipment model is
negligible. As we will discuss in section 3.5, under
some parameter regimes, especially when the cost of
transshipment arcs exceeds those of delayed ship-
ment arcs, the transshipment model can result in
outcomes similar to those generated by the delayed
shipment model. Constraints (16) capture the short-
age in each clinic (zsi ) after the second round of
ACTs is distributed. Constraints (17) and (18) ensure
the non-negativity of shortage.
In addition to the two-stage models, we also formu-

late an analogous three stage model that provides two
opportunities for recourse during the malaria season.
This model is used for comparison of reaction fre-
quency, but the framework is nearly identical to the
two stage models. For completeness, the formulation
is presented in Online Appendix S1, where we also
present an alternate objective function that focuses on
equity.

3.5. Scenario Analysis: Costs, Resource
Availability, and Uncertainty
In this section, we present the results of computa-
tional experiments based on actual locations of health
facilities that were mapped in a country-wide survey
conducted by the Japanese International Cooperative
Agency (JICA) in the year 2000. Facility demand was
estimated based on regular malaria case counts as
reported by hospitals and clinics to the central Min-
istry of Health, spanning the years 2003–2008. The

data are summarized in annual government Health
Management Information System (HMIS) reports pre-
pared by Republic of Malawi Ministry of Health
(2009) These reports include case counts reported by
month at each facility, whether the demand was met
or not.
As in all developing country contexts, there were

some missing and incomplete data at the facility
level. However, this nation-wide reporting program
became fully operational in all districts in 2002 and
remained so during our data-collection time-frame,
Chaulagai et al. (2005). The incident counts in the
data were mostly complete, with well over 80% of
the facilities reporting. We estimate the case counts
at facilities where data was missing by considering
incidence rate for the region; see for example,
Dzinjalamala (2009) and the catchment (population)
that the facility serves. Multiplying the population of
the catchment by the region’s incidence rate, we
obtain approximate case counts. Catchments were
estimated using Thiessen polygons in conjunction
with Malawian Census data. This general approach
is widely used for estimating facility-level incidence
of malaria in Malawi and other parts of Africa in the
epidemiology and public health literature (see
Bennett et al. 2013, Chaulagai et al. 2001, 2005,
Dzinjalamala 2009, Hay et al. 2010, Kazembe 2007,
Kazembe et al. 2006).
It was assumed that people used the closest health

facility. In reality, this may not always be true, as
patients may prefer one facility over another, or trans-
portation (i.e., buses) might facilitate travel to a far-
ther facility. Nonetheless, as in common practice, case
counts were assigned proportional to health facilities
based on the estimated population catchment and the
probability of contracting malaria associated with
each geographical region. If the necessary data can be
obtained, an interesting follow-up study could com-
pare the actual demand against the Thiessen polygon
interpolation mechanism to determine the accuracy of
such approximations. Note, determining the error in
the Thiessen polygon approach has been well-
explored in the literature (e.g., Tatalovich et al. 2006,
Yang et al. 2004), in which Thiessen polygons are
found to perform well relative to other methods
Data were averaged over the five years to model a

typical malaria season in Malawi in the face of par-
tially missing data at the clinic level. By observing
clinics where the data were more complete, we noted
that, over the five years, there was some variability
from year to year but little evidence of overall upward
or downward trend. This is further confirmed by the
World Malaria Report 2014 (see WHO 2014), which
indicates no significant trend over the time period.
Although there was a slight increase in malaria-
related hospital admissions over the time frame, the
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report states that data were insufficiently consistent to
assess any trend in Malawi, consistent with observa-
tions from our own data. Although we recognize the
limitations of the data available, it is still very signifi-
cant that this effort is data-driven and reflects real
temporal and spatial patterns of malaria incidence
given current research.
Figure 3 shows the geographical and seasonal

shape of the ACT demand curve from our data. The
darker color (red) in Figure 3a, indicating higher
annual demand, tends to appear near populous urban
areas like Blantyre and in both urban and rural areas
near Lake Malawi where mosquitoes are more preva-
lent. In our historical demand data, malaria preva-
lence in each region grew over the malaria season
proportional to the infected population. Figure 3a was
generated by creating a heat map (ARCGIS) from the
case counts at the various facilities at their locations
from our data). A heat map was used because our
data use agreement did not allow us to show case
counts or relative sizes at individual, identifiable facil-
ities. Figure 3b shows that malaria medication
demand basically follows a six-month seasonal pat-
tern which coincides with the seasonal patterns of
rainfall and thus of Anophelene mosquito prevalence.
This was also obtained from our monthly case count
reports from the HMIS annual reports from 2003 to
2008. Furthermore, the geospatial and monthly stan-
dard deviations in our data were 443.9 (CV = 0.11)
and 326.56 (CV = 0.97), respectively.
In the three-stage model, we divided the year into

three periods, each consisting of four months. In both
two- and three-stage models, the first period is
August 1 through November 30, which is considered
the pre-malaria season with an average demand of
113,331 over the time frame. The other eight months,
December 1 through July 31, are considered the
malaria season. In the two-stage model, the second
stage is December 1 through July 31. In the three-stage
model, the second stage is December 1 through March
31, with an average demand of 674,702, and the third

stage is April 1 through July 31 with an average
demand of 1,319,287.
To generate clinic-level demand scenarios, we used

the estimated clinic-level demand (based on the his-
torical prevalence data and the aforementioned inter-
polation method using Thiessen polygons) as the
baseline. To make the results more robust to a range
of possible events, 10 scenarios (details will follow)
were then generated based on the expert opinion from
one of our co-authors who has performed extensive
field-work in Malawi regarding malaria. The scenar-
ios developed herein were designed and confirmed
based on his personal experiences over several years
in Malawi. Our data include demand from 290 facili-
ties including 3 regional warehouses, 21 district hos-
pitals, and 266 local clinics.
For each clinic, we generated 10 scenarios to popu-

late demand parameters for the second (dsi ) and third
stage (d0si ), respectively. We start with five main sce-
narios, assuming each of those scenarios are equally
likely to happen. The first three key scenarios were
generated by perturbing the original demand from
our historical data (Di). To add robustness, two other
scenarios were generated using a uniform distribu-
tion such that the mean of the uniform distribution
equals the average observed demand. For each of
those five main scenarios, we generated a less likely
variation to capture the potential for rare extreme
events. In total, we assumed each main scenario has a
probability of 0.19 and each scenario extension has a
probability of 0.01. In designing these scenarios, we
also capture correlated demand across the different
stages as malaria is a transmittable disease whose
spread depends on the number of infected persons.
That is, high initial demand is more likely to translate
into high demand in future stages. Details of these
scenarios are described in Table 2.
Note that a more sophisticated demand forecasting

model could use the historical data on malaria cases
as a baseline in conjunction with demographic census
information to detect key drivers of malaria case load,

N
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Figure 3 Plot of Demand for Malaria Medication Based on Geography (total yearly demand) and Seasonality (by month) [Color figure can be
viewed at wileyonlinelibrary.com]

Notes: Darker color (red) (a) indicates higher demand. Dots are facility locations.
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and consequently, medication demand. Such
advanced models could better characterize spatial
and temporal variation in medication demand. Such
advanced approaches, although feasible, are beyond
the scope of the current research.
To capture the transportation cost (cij), we calcu-

lated the distance between each facility pair in kilo-
meters. For the purposes of this research, we used
Euclidean distance. A road map for Malawi was avail-
able, and more accurate measures of road distance
based on a map could have been produced, but it was
found that the quality of the map varied by geo-
graphic area. It was found that Euclidean distances
accurately reflect road-based measures regionally in
Malawi and other research has confirmed that this
measure is satisfactory compared to more sophisti-
cated methods (see Nesbitt et al. 2014). To account for
cartographic shortfalls on published maps and
thereby maintain consistency over the region of inter-
est, we use straight line distance.
Road quality in Malawi varies widely and the sys-

tem is mostly underdeveloped so the unit transporta-
tion cost can vary by route, although specific data on
road quality are not available. Thus, we initially use
the average transportation cost per kilometer in
Malawi reported by Lall et al. (2009) which is about 4
cents (or 228.4 kwacha, the Malawian currency), but
vary the costs to account for road conditions in our
sensitivity analyses.
In the following sections, we consider key features

in analyzing a public-sector supply chain in the devel-
oping world. We begin by performing a sensitivity
analysis on the shortage penalty, transshipment costs,
and supply availability. All three factors have been
shown to be of significant concern in the literature.
We then conclude with a novel analysis of road condi-
tions, which are known to degrade significantly dur-
ing the rainy season when malaria is most prevalent.

3.5.1. Sensitivity Analysis on the Value of
Shortage Penalty. Estimating the shortage penalty

for malaria medications is non-trivial. Factors such as
loss of income and productivity (for patients and rela-
tives) during the course of infection, and health care
expenditures should be taken into account in order to
obtain a correct estimate. It should be noted that given
the type of parasite, the symptoms and their severity
vary dramatically. Some people may have already
developed immunity while for others (especially chil-
dren) the disease can be deadly. Furthermore, malaria
can have a higher indirect impact on children by ham-
pering their physical and intellectual growth.
Accounting for all these factors and monetizing their
impact is key to determining the actual value of the
shortage penalty and is beyond the scope of this
paper. Due to a lack of reliable data regarding health
care expenditures, we performed a sensitivity analy-
sis on the value of the shortage penalty. As a baseline,
we begin with Malawi’s national income per capita,
reported to be $810 by the World Health Organization
(WHO) (2014). According to UNICEF (2004), malaria
can slow the economic growth in sub-Saharan Africa
by 1.3% annually. Based on these statistics, one can
estimate the economic impact of malaria in Malawi at
the individual level to be about $10.5 in lost economic
growth, which is considered a lower bound because it
captures only the loss of economic growth. In this sec-
tion, we consider shortage penalty values between
$10 and $100. Based on our computational results,
even a low number, $20, is high enough to trigger
effective distribution of medications. Hence, we use
the $20 shortage penalty for future illustrative exam-
ples and computations (e.g., section 4.5). For the fol-
lowing experiments, we set the available supply of
ACT to 1.5 million units as this was also a middle
range for the estimated annual supply.
Figure 4 demonstrates the inverse relationship

between shortage penalty and transshipment volume,
which is consistent with results reported by
Rottkemper et al. (2012). The three-stage delayed
shipment model tends to be more effective at address-
ing shortage, although at a higher transportation cost.

Table 2 Ten Demand Scenarios Were Generated Based on the Observed Historical Demand for Each Clinic (Di)

No Name Description Probability Demand in Stage 2 (ds
i ) Demand in Stage 3(d 0s

i )

1 LOW1 Low total demand, variation 1 0.19 1
4Di

3
8Di

2 LOW2 Low total demand, variation 2 0.01 1
4Di

1
8Di

3 MED1 Medium total demand, variation 1 0.19 1
2Di

1
2Di

4 MED2 Medium total demand, variation 2 0.01 1
2Di

3
8Di

5 HIGH1 High total demand, variation 1 0.19 3
4Di

5
6Di

6 HIGH2 High total demand, variation 2 0.01 3
4Di Di

7 CONS1 Uniform total demand, variation 1 0.19 U ½0:9 D
2 ; 1:1

D
2� 2di

8 CONS2 Uniform total demand, variation 2 0.01 U ½0:9 D
2 ; 1:1

D
2

1
10 di

9 VAR1 Uniform demand variation 3 0.19 U ½0:2 D
2 ; 1:8

D
2

3
4 di

10 VAR2 Uniform demand variation 4 0.01 U ½0:2 D
2 ; 1:8

D
2� di
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As the shortage penalty increases, however, we
observe that the gap between the three-stage delayed
shipment model and the three-stage transshipment
model shrinks. Also note that under high shortage
penalty values, the two-stage delayed shipment
model results in higher shortage than the two-stage
transshipment model. This occurs because once the
actual demand is realized, the delayed shipment
model can only send additional shipments of medica-
tions from the district hospitals to the local clinics to
address shortage. The transshipment model, on the
other hand, has a broader base of facilities from which
to satisfy demand. In some sense, this confirms the
results of Rosales et al. (2013) that transshipment
models outperform generalized allocation mecha-
nisms under most parameters.
Managerial Insights. The delayed shipment model

incurs lower shortages than transshipment in most
cases. At first, this may seem counterintuitive because
there is more flexibility in the transshipment model.
However, this flexibility actually causes the first stage
to distribute all the inventory out to the clinics to save
on transportation cost instead of prepositioning a
large stock at the district hospitals. This actually
decreases the precision with which inventory is posi-
tioned across the country, making it more likely that
sufficient inventory is not nearby the point of need.
Transshipments will not be executed when the dis-
tance renders the transportation cost prohibitive. In
the delayed shipment model, on the other hand, the
district hospitals tend to be centrally located with
many clinics around them. Since there is a larger stock
stored at these hospitals initially (by design), there
will be more incentive to take the recourse shipping
action in stages two and three due to sufficient inven-
tory and proximity. This also explains why shipping
cost is higher for delayed shipment, because rather
than shipping direct, much of the product must fol-
low first a route from the main dispensary to the dis-
trict hospital and then a second route from the
hospital to the clinics. Hence, the key insight is that if
the government has sufficient transportation budget

and cares more about avoiding shortage, then delayed
shipment may be a better structure.

3.5.2. Transshipment Cost Sensitivity Analysis. In
this section, we analyze the sensitivity of the trans-
shipment model to the transshipment cost and com-
pare it with the delayed shipment model. In
particular we explore the cases where (i) transship-
ment is cheaper and (ii) more expensive than ship-
ment along the main channels from the regional and
district hospitals. It may be possible that shipments
are cheaper because smaller and more frequent ship-
ments may be transported with smaller and cheaper
transportation methods, such as a motorcycle or small
vehicle that can more easily pass difficult terrain or
roads that are damaged by heavy rains. In these cases,
a large truck may have difficulty navigating certain
routes and therefore be more costly relative to trans-
shipment. On the other hand, it may also be possible
that frequent transshipment loses economies of scale,
making clinic-to-clinic shipping costs more expensive.
Thus we analyze how the models react in both cases.
To do so, we modify the cost of clinic-to-clinic trans-
shipment to be X% of the standard cost of shipment,
where X ranges from 0% to 150%. Costs for the other
routes remain unchanged.
In Figure 5a and b, the dashed lines represent the

expected transportation cost and expected shortage
volume respectively for the delayed shipment mod-
els. These are constant across all scenarios because
delayed shipment does not use the clinic-to-clinic
routes. The solid lines represent the transportation
and expected shortage costs for the transshipment
model. When transshipment is not expensive, all the
inventory is initially allocated to one clinic in the clus-
ter, which then transships to the other clinics due to
the lower cost of transshipment relative to the cost of
the initial distribution.
Transportation cost initially increases as transship-

ment becomes more expensive; however at 60%, the
transportation cost begins to decrease while the short-
age penalty increases more sharply. This inflection
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point occurs because at this level, clinic-to-clinic
transportation becomes expensive enough that the
model will stop transshipping along certain routes
altogether, preferring some shortages rather than
incurring high shipping costs, e.g., shipping across
the country to fulfill a small amount of demand. As
observed in section 3.2, the similarity between Equa-
tions (10) and (15) enables the transshipment model
to store some inventory at district hospitals and delay
shipments if necessary. When transshipment becomes
prohibitively expensive, clinic-to-clinic shipments are
avoided entirely and the transshipment model
restricts itself only to the cheaper routes used in the
delayed-shipment model; then both costs approach
those of delayed shipment.
While the shape of the curve is driven by the partic-

ular network structure as well as the shortage penalty
and original transportation cost values, changing
these values would likely shift the inflection point
while maintaining the overall shape. A key insight is
that, once transshipment reaches a scenario-specific
cost threshold (e.g., 50%–60% in Figure 5), the trans-
portation cost will remain relatively stable, as the
optimization becomes more conservative as to how
far one would be willing to ship medications to satisfy
unmet demand in a different region. Essentially,
transshipment eliminates routes from consideration
due to high cost thus becoming less effective in

satisfying all demand. This serves to localize the
transshipment mechanism around increasingly proxi-
mate geographical clusters. As an extension of this
line of reasoning, the higher the penalty cost for
unmet demand, the longer the model resists localiz-
ing transshipment efforts in favor of more
regional/national transshipment. Thus, depending on
the strategic goals and constraints of the distributor,
the optimal shipping network may be more localized
or more national.

3.5.3. Sensitivity Analysis on Supply Avail-
ability. Supply availability is a major challenge in
distributing malaria medications in holoendemic
areas. As reported by Natarajan and Swaminathan
(2014) the process of procuring humanitarian supplies
can be subject to delays and uncertainty. To better
assess the effectiveness of our proposed stochastic
models, we compare their results for a range of possi-
ble supply values, between 500,000 and 2,000,000
units while fixing the shortage penalty at $100. Fig-
ure 6b, shows that the stochastic models can better
utilize the additional supply of medications to
address shortage compared to the baseline model.
Among the stochastic models, three-stage models
tend to be better at utilizing additional supply than
two-stage models. This insight is similar to the key
takeaway from section 3.5.1; specifically, the three-
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stage model better utilizes the supply of ACTs
through targeted repositioning in stages two and
three. Obviously as more medications are available,
more medications will be transported, and while the
total cost of shortage decreases, transportation cost
will increase. As mentioned earlier, the analysis in
this section is performed by fixing the per unit short-
age penalty (p) at $100. Based on the discussion in sec-
tion 3.5.1, a higher value of p creates more incentive
for the model to transship more items and reduce the
overall shortage cost. As observed in Figure 6b, for a
fixed value of p, as the total supply volume increases,
transportation cost almost reaches a plateau. We can
expect that increasing p will shift the plateau to the
right, while reducing p will shift the plateau to the
left.

3.5.4. Road Condition Analysis. As mentioned in
section 1.2, poor road conditions can make certain
transportation routes difficult and therefore more
costly, requiring, for instance, special vehicles or
delayed travel during especially poor weather peri-
ods. To analyze this feature of supply distribution in
the developing world, we design a scenario in which a
proportion of the roads in our supply network is made
more costly to travel due to poor road conditions.
Since we are not aware of any data on the actual road
conditions of the thousands of potential supply routes,
we test the model’s sensitivity to poor road conditions
by varying the proportion of total routes that are con-
sidered to be in poor condition from 10% up to 50%,
with the poor routes being selected at random with an
additional cost of shipping along the given route also
generated randomly. In the scenario where 10% of
roads are considered in poor condition, we assigned a
Bernoulli indicator to each road where the road is con-
sidered in poor condition with p = 0.1 and standard
condition with 1 � p = 0.9. If the road was found to
be poor, we multiplied the transportation cost by
1 + U(0, 0.5), where U(�) is a uniform random vari-
able. We modify the cost per km rather than adding a
random quantity to each route because when traveling
on a poor road for a longer distance, the cost should
increase more than when traveling on a poor road for

a shorter distance. We then generated five outcome
samples for the entire set of routes. For the 20% sce-
nario, we started with the same bad roads as the 10%
scenario and then modified the remaining roads that
had not been touched in the previous scenario using a
Bernoulli probability that guaranteed that 20% of the
total routes would be modified (in this case p = 0.111).
This yields a coherent comparison between the differ-
ent scenarios. The rest of the scenarios (30%–50%)
were generated in the same manner.
Figure 7 shows the results for the different percent-

ages of roads in poor condition in terms of transporta-
tion cost (Figure 7a) and the expected shortage
(Figure 7b). The X’s represent the solution of the
transshipment model for the five different random
scenarios we generated at each percentage of poor
roads. The dashed line represents the average of the
five scenarios for transshipment. Likewise, the plus
symbol and solid line represent the corresponding
outcomes for the delayed shipment model.
First, note that the transportation cost remains rela-

tively stable as the percentage of bad roads increases.
This is because the transportation cost is high enough
that it becomes more beneficial to keep medications
locally rather than ship across routes with poor road
conditions for a small reduction in shortages. Delayed
shipment costs trend downward because there are
fewer viable options when a key route becomes
affected by poor road conditions so the model chooses
to accept more shortages. The transshipment model,
on the other hand, has more flexibility because there
are many more options when clinic-to-clinic routes
are added. When one route becomes more expensive,
the model is able to find other viable routes to trans-
ship product. The transshipment model’s transporta-
tion cost demonstrates a slight upward trend as the
transshipment model seeks alternative routes that
allow for more movement of medications at a slightly
higher price.
The cost of storing more medications locally can be

measured in terms of increased shortages. As seen in
Figure 7b, the slope of the increase in shortage is
steeper for the delayed shipment model than the
transshipment model, which implies that the
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transshipment model is better at meeting demand as
road conditions worsen.
A key takeaway from this analysis is that poor road

conditions lead to an increase in shortages and less
movement of product around the network. However,
the flexibility of the transshipment model to choose
alternate routes enables more demand to be satisfied
relative to delayed shipment, albeit at increased trans-
portation cost due to using more expensive alternate
routes.

3.6. A New Distribution Structure: Establishing
Clinic Clusters
One of the key insights gained from the computa-
tional experiments on the strategic-level stochastic
program is the appearance of what we call clinic clus-
ters. That is, the transshipment stochastic models
group clinics together into clusters such that trans-
shipment often occurs within clusters only, and very
rarely between different clusters. In our transshipment
model experiments, for example, only 15%–25% of
clinics send ACTs to other clinics in the recourse
stage. These sender clinics transship their excess
inventory to between 2 and 5 proximal receiver clinics
in the vicinity of the sender clinic. Figure 8 illustrates
five representative clinic clusters in the northern area
of Malawi. This idea of clusters can be used to decom-
pose the nationwide problem into tractable cluster-
level problems that can be solved independently at
the tactical/operational level. This is the key to inte-
grating the strategic models with the operational
models that we develop in section 4.
This decomposition has further benefits. The geo-

graphic proximity of clinics within a cluster increases
the likelihood that the clinics would be willing to
work together toward a transshipment program; this
partially mitigates challenges associated with regional
rivalries mentioned in section 1.2. Proximity also
makes transshipment more feasible by motorcycle or
small vehicle that are less likely to get stuck due to
poor road conditions. Finally, communication—a

major cause of breakdown of supply—is much easier
for tightly clustered clinics.

4. A Tactical/Operational Model for
Transshipment in Clusters

For the strategic planning models of section 3.2 and
section A.1 in Online Appendix S1, it was necessarily
assumed that recourse occurred under continuous
review. In reality, transshipments would likely occur
periodically at regularly scheduled intervals after
stock reviews at each facility. In this section, we use a
MDP to develop a mechanism to operationalize the
transshipment concept at a cluster level based on the
strategic plan developed in the previous sections.
First, we formulate a MDP model to analyze the

dynamics of a periodic review system for the clinic
clusters. Second, we analyze the structure of the opti-
mal policy under a reasonable demand assumption
for clinics that are within close geographic proximity.
We are able to show that balancing the load evenly
across the clinic cluster is optimal, but re-balancing
occurs only in a cluster-level “sweet spot” where
there is not too much or too little inventory in the
cluster as a whole. Third, we parameterize the model
with historical demand data (as described at the
beginning of section 3.5) and solve the MDP numeri-
cally to illustrate the behavior of the model and
explore unique features of distributing pharmaceuti-
cals in the developing countries.
To identify clinic clusters, we solve the strategic-

level transshipment model to optimality and calculate
the optimal values of transshipment between two clin-
ics under all scenarios, i.e., ysij. Then, we take the maxi-
mum of transshipment values across all scenarios
defined as ymax

ij ¼ maxs2S ysij. If there has been a “sig-
nificant” transshipment between those two clinics, i.e.,
ymax
ij exceeds a pre-determined threshold, we assume

those two clinics are in the same cluster. To conduct
computational experiments, we set this threshold to
the average monthly demand of the receiving clinic
(i.e., j) across all scenarios, i.e.,

P
s2S psd

s
j .

Note that this is not an exact clustering method
(e.g., k-means). Instead, we are inferring cluster struc-
tures from the results of the transshipment model.
The downside to this method of developing clusters
is that the cluster boundaries depend on the actual
parameter values. For instance, as the cost of trans-
shipment increases, the model tends to hold on to
some inventory at the district hospitals and ship them
to clinics with a delay. In another extreme case, when
transshipment is very inexpensive, a clinic may
receive a small shipment from another clinic that can-
not be meaningfully assigned to the same cluster.
Hence, the results of the stochastic program will not
always guarantee that we obtain mutually exclusive

Figure 8 Five Clinic Clusters in the Northern Region of Malawi [Color
figure can be viewed at wileyonlinelibrary.com]
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clusters. We emphasize, however, that we focus on
identifying mutually exclusive clusters of clinics
based on the idea that very small or zero flows
between two clinics in the strategic planning model
indicate little need for short term transshipment
between them. So, by eliminating shipments that were
lower than an empirically determined threshold, we
identified mutually exclusive clusters of clinics—see
Appendix S2 for more details. While we developed a
very intuitive approach, future research would better
understand the power of our approach by comparing
it to other optimization-based approaches or even to
integrate other holistic considerations into the pro-
cess. In practice, the system designer can bring to bear
good experience-based judgment.
In our operational model, each clinic cluster is mod-

eled separately with a periodic review cycle in which
each clinic’s inventory is surveyed and then a deci-
sion is made as to how much to transfer to other clin-
ics within the cluster. At the beginning of each period,
each clinic incurs a shortage penalty for unmet
demand from the prior stage—indicated by a negative
inventory value. Next, a decision is made regarding
how much product to ship between clinics. Finally,
demand arrives to each clinic within the cluster
according to a distribution for epoch n of dn � Fn
and the state is updated for the next decision epoch.
The finite-horizon MDP formulation is given in Equa-
tion (19) with notation in Table 3. Equation (20) limits
the action space to allow transshipment only if inven-
tory is available.

fnðNÞ ¼ PTð�NÞþ þmin
u2UN

�
c
X
j2U

ðujÞþ þ Effn�1ððNÞþ þ u

� dnÞg
�
;

ð19Þ

where the action space is given by:

UN ¼ fu ¼ ðu1; . . .; usÞ : uj � nj and
X
j2U

uj ¼ 0g: ð20Þ

In the tactical model, we only focus on the clinics in
one cluster, which means they are all in close proxim-
ity. This makes the distance between each clinic in the
cluster approximately the same, which allows us to
safely approximate cij = c, where i and j are in the
same cluster. However, an advantage of the MDP
approach is that it easily accommodates nonlinear
cost functions and transport capacity limits if needed.
The expected cost-to-go is based on the positive part
of Ξ, because in malaria treatment, the dynamics
behave as “lost sales,” not backorders.

4.1. Structural Properties and Insights for Clinic
Cluster Transshipment
In this section, we analyze several structural proper-
ties of our MDP model to gain insight into the optimal
transshipment policy for clinic clusters. We specifi-
cally show that (i) the entire cluster is better off when
any clinic in the cluster increases its initial supply, (ii)
balancing the inventory among clinics is optimal, and
(iii) the optimal transshipment policy is of threshold
nature.
Individual supply benefits the group. Theorem 1

shows that the entire cluster is always better off if any
one of its clinics receives more supplies. This theorem
supports the need for a strategic planning model that
initially allocates ACTs to clusters effectively and
equitably.

THEOREM 1. fn(Ξ) is non-increasing in ξj for all n and j.

Optimality of Inventory Balancing within a Clus-
ter. In this section, we develop a model for a cluster
consisting of two clinics and show that the optimal
policy balances the inventory between the two clinics.
In section 4.2, we extend the insights regarding cluster
balancing from the analytical model to show numeri-
cally that the same structure holds more generally by
applying historical data to larger clinic clusters.
We begin by defining what it means for a function

to be balanced. Next, we show that the balanced prop-
erty is preserved by the expectation operator in
Lemma 1. This lemma supports development of
further operational insights including the key result
(Theorem 2 and Corollary 1) that the optimal trans-
shipment policy is of threshold nature; and depend-
ing on the cluster-wide inventory levels and the
disparity between the clinics the optimal action will
either (i) re-balance the inventory across the cluster so
that each clinic has the same inventory level or (ii) do
nothing. This result is supported by deriving ancillary
insights that show the optimal states for a clinic clus-
ter possess the property that all clinics have “roughly
equal” inventory levels (Lemma 3), and transship-
ment only occurs from clinics with higher inventory
to clinics with lower inventory (Lemma 2). These last

Table 3 Clinic Transshipment Model Dynamic Program Notation

Ξ n-dimensional vector for the amount of inventory at
each clinic at the beginning of the period

ξj The j th component of Ξ, indicating how much inventory is
at clinic j

UN n-dimensional integer vector space where u 2 U is defined in
Equation (20), which enforces flow conservation

uj The jth component of u 2 U, which is the action describing how
much to increase or decrease clinic j’s inventory level via
transshipment

Π n-dimensional vector of shortage penalty
c Unit cost of transshipment between clinics
dn Random variable for pharmaceutical demand in period n
Φ Set of clinics in the cluster, a subset of C.
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two Lemma’s also guarantee that our decision sup-
port has the appealing property of being perceived as
fair by implementing clinics: no clinic with less inven-
tory will ship to one with higher inventory, and the
goal of the algorithm is to achieve inventory balance
among the clinics.
As a precursor to model analysis, we begin by

describing the reasonable assumption for tightly clus-
tered clinics that the severity of malaria outbreak will
follow a similar pattern among the clinics of the same
cluster. Mathematically, we mean that it is equally
likely to see malaria incidence of x in clinic A and y in
clinic B as it is to see incidence y in clinic A and x in
clinic B. We call this a symmetric demand distribution.
With symmetric demand, we can prove the properties
mentioned above. We begin with a definition of a
balanced function and then proceed to show that the
MDP value function is balanced, which guarantees
the optimality of balancing inventory levels across the
clinics within a given cluster.

DEFINITION 1. We call a function f : R2 ! Rbalanced
if given Ξ and Ξ

0
, such that n1 þ n2 ¼ n01 þ n02, if

jn1 � n2j � jn01 � n02j then f(Ξ) ≤ f(Ξ
0
).

In the following lemma, we show for symmetric
demand distributions that the expected cost-to-go
function of the MDP preserves the balanced property.
We then use this lemma (with proofs for this and all
results in Online Appendix S3) to prove structural
properties of our periodic review with transshipment
MDP and build up insights supporting the optimality
of balanced inventory levels across the cluster.

LEMMA 1. If the two clinics in a cluster have a symmetric
demand distribution and the function fn(Ξ) is balanced for
all n, then gðNÞ ¼ E½fnðN � dnÞ� is also balanced.

LEMMA 2. If function fn(Ξ) is balanced for all n, the
optimal action will never transship from the clinic with
lower inventory to a clinic with higher inventory.

This result, combined with the following lemma,
reduces the action space significantly since the opti-
mal action u� must be an element of
{0, . . ., ⌊ 0.5 9 (max{ξ1, ξ2} � min{ξ1, ξ2})⌋}. u� will
be the amount of medication shipped from the clinic
with higher inventory to the one with lower inven-
tory. The next lemma (proved in Online Appendix S3)
demonstrates that a completely balanced inventory
distribution is the lowest cost state for a clinic cluster.
Hence, each clinic cluster will desire to move toward
a cluster-wide balanced inventory as long as the cost
of achieving the balance is not too great—which is
shown by Theorem 2 and Corollary 1.

LEMMA 3. If fn(Ξ) is a balanced function for all n, then
for any total inventory level ξ1 + ξ2, the value function
is minimized where n�1 ¼ n�2 if ξ1 + ξ2 is even and
jn�1 � n�2j ¼ 1 if ξ1 + ξ2 is odd.

Now, we are ready for the main result, which is that
the optimal transshipment policy follows a threshold
in which the clinics will either (i) re-balance the inven-
tory across the cluster so that each clinic has the same
inventory level or (ii) do nothing. We first show that
the MDP value function is balanced in Theorem 2.
This means that the optimal solution of our MDP has
the properties of Lemmas 2 and 3.

THEOREM 2. When the demand vector has a symmetric
distribution, the value function in (19) is balanced.

An Optimal Threshold Policy for Inventory Bal-
ancing. The lowest cost state for the clinic cluster is a
balanced inventory level. However, to achieve a
balanced state in each epoch requires paying a trans-
shipment cost, so it may not be optimal to re-balance
the cluster in every epoch. This section provides the
key insight that the clinics should follow a threshold
policy that re-balances inventory when the difference
between inventory levels is above a certain thresh-
old, but will not re-balance if both clinics have either
too little inventory or a surplus of inventory. Figure 9
provides a typical example of the optimal transship-
ment areas. In Area 1 there is not enough inventory
within the cluster (shortages being likely at both
clinics) and in Area 3 there is sufficient inventory in
the cluster (shortages being unlikely at either clinic);
hence no transshipment occurs. In Area 5, Clinic 1
has surplus inventory while Clinic 2 does not have
enough, with the reverse occurring in Area 4, and so
re-balancing occurs in both Area 4 and Area 5. The
structure demonstrated in Figure 9 is guaranteed by
the following Corollary, which follows directly from
Theorem 2.

COROLLARY 1. Under a non-decreasing shipping cost,
the optimal policy is of threshold nature with stage-
dependent thresholds. Depending on the shipping cost,
the optimal action will perform the minimal amount of
transshipment necessary to balance the inventory (in the
sense of Definition 1) or do nothing.

As an example of Corollary 1, consider the case
where there is a fixed cost per shipment. The optimal
policy balances the inventories between the two
clinics in the following way: u = 0 if
c [ Effn�1ððNÞþ � dnÞg; otherwise u is the optimal
action that brings the inventory levels of the clinics to
bn1 þ n2

2 c and n1 þ n2 � bn1 þ n2
2 c. Any analytical proof

regarding the structure of an optimal policy for
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clusters consisting of more than two clinics can be
complex.

4.2. Illustrative Example of the Optimal Area-
Based Transshipment Policy
In this section, a numerical example is used to gain
insight into state-specific optimal actions. For the pur-
pose of exposition, we begin with an example of a
cluster consisting of two clinics. We also scale the
units of demand and supply to obtain the following
restricted state space:

N ¼
n
ðn1; n2Þ 2 R2 : �5� ni � 9; 8i

2 f1; 2g and n1 þ n2 � 9
o
:

We solve the two-dimensional MDP under three
different parameter settings where the ratio of short-
age penalty to unit transportation cost was either: (1)
low, (2) moderate, or (3) high and solve it for six
stages (one stage for each month of the malaria sea-
son). Figure 9 illustrates the optimal actions at stage 5
(i.e., n � 1) for each state for cases (1), (2), and (3).
The optimal actions in Figure 9 are identified by five
areas, 1 through 5, described in more detail in Table 4.
Figure 9 shows that the ratio of shortage penalty to

transportation cost (p/c) plays an important role. As
this ratio increases, there is more transshipment
between clinics; transshipment Areas 4 and 5 becomes
larger while no action Areas 2 and 3 shrink. As the

p/c ratio decreases we observe less transshipment,
which has the opposite effect on the areas. This
behavior demonstrates the importance of low cost
and accessible shipping options for short distance
transport as this leads to more effective transshipment
policies.
In section 4.1, we found the structure of an optimal

transshipment policy with two-clinic clusters and
symmetric demand. While the setup considered was
reasonable both in the demand assumption (as
argued previously) and size (a number of clusters
from the strategic model contained only two clinics),
we can further extend the analytical results to clusters
containing three clinics through numerical analysis.
The insights are summarized below:

INSIGHT 1. Corollary 1 extends to clusters of size greater
than two. When the demands of all the clinics in a cluster
are symmetrically distributed, the optimal action is to
balance the inventory between the clinics in the cluster.

INSIGHT 2. As the ratio of the shortage penalty to the
transshipment cost increases, it is optimal to ship more
units between the clinics; increasing the effectiveness of
transshipment in preventing ACT shortage.

Similar to the previous example, we scale the units
of demand and supply to obtain the following
restricted state space:

N ¼
n
ðn1; n2; n3Þ 2 R3 : �5� ni � 9; 8i 2 f1; 2; 3g and

n1 þ n2 � 9
o
:

The system state has three dimensions, so we only
illustrate the optimal actions for three inventory levels
at Clinic 3: 0, 2, and 4. For ease of comparison, we
chose a moderate ratio of shortage penalty to trans-
portation cost, i.e., p/c = 10. The optimal actions in
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Figure 9 Optimal Actions in Period 5 for Three Parameter Settings

Table 4 Five Areas in the Two-Dimensional Illustrative Example

Area Description Actions

1 Clinics 1 and 2 face shortage No action is possible
2 Clinics have low inventories No action is recommended
3 Both clinics have high surplus No action is required
4 Clinic 1 is facing shortage

while Clinic 2 has surplus
Clinic 2 transships to clinic 1

5 Clinic 2 is facing shortage
while Clinic 1 has surplus

Clinic 1 transships to Clinic 1
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Figure 10 are identified by five areas, detailed in
Table 5. Figure 10, shows that the optimal policy bal-
ances the inventory between the three clinics when
demand is symmetric. As the inventory level of clinic
3 increases, that clinic ships more pharmaceutical
units to Clinics 1 and 2 if needed.

4.3. Clinic Clustering vs. Fully Integrated
Optimization
In section 3.6, we introduced a method for integrating
the strategic and tactical levels of supply allocation
through the decomposition of the strategic model into
clinic clusters based on the structure of the solution.
While this approach has significant computational
advantages (the tactical MDP is intractable at the level
of the full-scale problem), a question remains regard-
ing loss of optimality stemming from the cluster-
based decomposition. In this section, we address this
issue by studying four of the larger groups of clinics
for which the strategic model recommended cluster
decomposition. Through numerical analysis, we com-
pare for each group (i) the fully integrated solution,
(ii) the cluster decomposition solution suggested in
section 3.6, (iii) and the solution of the baseline (i.e.,
naive) model from section 3.1.
For the fully integrated solutions, we solve a MDP

that performs both the initial allocation of inventory
(stage 1) and the transshipment between any pair of

clinics within the group of clinics studied (stage 2).
This is done in reverse, by solving the MDP for all
possible initial inventory allocations, and then select-
ing the optimal initial inventory to minimize the total
cost using an exhaustive search.
For the cluster decomposition solution, we first run

the optimization that solves the strategic planning
problem to identify the optimal clusters within the
larger group and initial allocation of inventory within
each cluster (as described in section 3.6). Next, we
solve an MDP for each cluster separately, only allow-
ing transshipment between clinics within the same
cluster. This approach bridges the strategic and the
tactical/operational models.
For the baseline model, we simply solve the base-

line optimization and allocate inventory accordingly.
In solving the MDP, we use the actual demand pat-
terns (scaled down for tractability) at each clinic to
incorporate (i) non-stationary demand by month dur-
ing the six-month malaria season, and (ii) demand
variability by year by including very high, high, med-
ium, low, and very low years.
To select the four larger groups of clinics to study,

we first identified groups of four and five clinics that
(i) were all in close proximity to one another and (ii)
were split into two clusters based on the global strate-
gic solution (containing all 290 clinics). We capped
the group size at five clinics because analyzing any
larger group of clinics causes the fully integrated
solution to be intractable due to the curse of dimen-
sionality. Furthermore, including larger groups usu-
ally entails groups of clinics with significant distance
between clusters, in which case the optimal solution
would almost never utilize shipping routes not avail-
able in our cluster topology—as seen in the strategic
solution. Hence, this analysis should be sufficient to
capture the key comparison of full integration vs. the
decomposition approach. Table 6 shows distances in
kilometers between clinics in each of the four master
groups.
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Figure 10 Optimal Actions in Period 5 for a Cluster Consisting of Three Clinics

Table 5 Five Areas in the Three-Dimensional Illustrative Example

Area Description Actions

1 Clinics 1 & 2 face shortage If 3 has surplus, transships to
1 and 2, no action otherwise

2 Clinics 1 & 2 have
low inventories

If 3 has surplus, transships to
1 or 2, no action otherwise

3 Clinics 1 & 2 have
high surplus

1 & 2 transship to 3 if needed

4 Clinic 2 has surplus Clinic 2 transships to Clinics
1 and/or 3 if needed

5 Clinic 1 has surplus Clinic 1 transships to Clinics
1 and/or 3 if needed
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The clusters derived from the strategic solutions for
each group were as follows. Group 1: Cluster
1 = Clinic 274 and 285; Cluster 2 = Clinic 139, 142,
and 143. Group 2: Cluster 1 = Clinic 249 and 252; Clus-
ter 2 = Clinic 1, 2, and 263. Group 3: Cluster 1 = Clinic
12 and 13, Cluster 2 = Clinic 256 and 265. Group 4:
Cluster 1 = Clinic 3 and 4; Cluster 2 = Clinic 225 and
252.
We now present the optimality gap of both the clus-

ter-based decomposition strategy and the baseline
modeling approach compared to the fully integrated
optimal solution. We analyze different starting levels
of total inventory for the entire group. We start at the
highest levels that can potentially satisfy the full
demand in most scenarios and decrease the total ini-
tial inventory in the cluster by two until reaching a
very low level of 10. This allows us to study the solu-
tion at different levels of inventory relative to demand
to capture the impact of inventory scarcity (or lack
thereof) on the optimal solution as well. Since each of
the clusters was normalized to have similar average
demand (although different dispersion of demand
across clinics in the cluster), we use the same range
for all clusters. Table 7 presents the results for the four
groups for very low initial inventory levels (10) up to
high initial inventory levels (32). Beyond this size of
initial inventory the fully integrated model for five
clinic groups (group 1 and 2) became intractable.
There are several key observations from the table.
First is that the percent optimality gap for the pro-
posed decomposition heuristic is very small for both 4
and 5 clinic groups, typically between 0%–1%, with

the average gap being 0.5% and the maximum only
reaching 3.2%. Second, the gap for the decomposition
heuristic remains stable as the initial inventory
increases, whereas the gap for the baseline model
grows monotonically at an increasing rate. When the
initial inventory is low, all models can use nearly all
of the initially allocated demand. The decomposition
heuristic continues to track the fully integrated model
closely because the clinic clusters created by the
decomposition heuristic have the property that cross-
cluster shipping is generally undesirable so the fully
integrated model rarely uses these shipping lanes.
Hence, the fully integrated model behaves like the
clustered model in most cases, which leads to the
small optimality gap.

4.4. Computational Bounds for the Fully
Integrated Model
In section 4.3, we show that the cluster-based model
behaves like the fully integrated model for a limited
set of clinics. However, the fully integrated model can
become intractable (due to the increase in the state-
space) as the number of clinics increases. In this sec-
tion we calculate lower bounds on the fully integrated
model for larger problem instances to describe the
performance of the cluster-based model for a larger
set of clinics.
Karmarkar (1987) develops a Lagrangian relaxation

approach (by relaxing inventory balance constraints
and adding them with a penalty to the objective func-
tion) to calculate a lower bound for multi-location,
multi-period inventory problems. This work also

Table 6 Intraclinic Distances for Four Larger Groups of Clinics that can be Decomposed into Clinic Clusters

Group 1 Group 2 Group 3 Group 4

139 142 143 274 285 1 2 249 252 263 12 13 256 265 3 4 225 232
139 – 27 13 12 13 1 – 5 15 19 16 12 – 8 30 32 3 – 5 15 12
142 27 – 21 15 20 2 5 – 16 20 18 13 8 – 27 31 4 5 – 16 14
143 13 21 – 11 19 249 15 16 – 4 6 256 30 27 – 4 225 15 16 – 6
274 12 15 11 – 9 252 19 20 4 – 6 265 32 31 4 – 232 12 14 6 –
285 13 20 19 9 – 263 16 18 6 6 –

Note: Data in matrix form with clinic number as the row and column headers.

Table 7 Optimality Gap (%) for Decomposition Heuristic and Baseline Optimization vs. the Fully Integrated Optimization for Clinic Groups 1–4

Initial inventory in group

10 12 14 16 18 20 22 24 26 28 30 32

Group 1 Decomp 0.0 0.0 0.0 0.0 0.0 0.1 0.4 1.1 1.1 0.8 0.8 1.6
Baseline 3.5 4.8 7.4 10.6 14.4 19.0 26.3 37.7 52.1 70.6 95.1 126.9

Group 2 Decomp 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.5 0.8 1.9 1.4
Baseline 1.8 3.9 6.5 9.7 13.6 18.5 26.5 34.3 49.7 69.9 96.2 131.3

Group 3 Decomp 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 0.4 0.5 2.0 0.9
Baseline 1.7 2.8 5.1 7.9 11.3 15.5 22.4 28.9 41.8 58.4 79.3 107.4

Group 4 Decomp 0.0 0.0 0.0 0.0 0.1 0.1 0.5 0.3 0.7 1.4 1.1 3.2
Baseline 1.7 2.8 5.2 8.0 12.8 17.3 22.8 31.7 45.0 62.3 85.1 113.9
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proposes a method for calculating upper bounds by
decomposing the problem by location—similar to our
cluster-based approach. In this vein, we develop an
easily implementable lower bound for our problem.
Instead of dualizing the inventory balance constraints,
we adapt a version of the two-stage stochastic pro-
gram in which all the demand is realized in two
stages. We consider a set of 14 clinics—groups 1,2,
and 3 as described in Table 6 and compare the lower
bound (based on this stochastic program adaptation)
and the upper bound (results of the cluster-based
model) to calculate bounds on the optimality gap of
the cluster based model. We calculate the upper and
lower bounds for a range of initial inventory values.
The results are illustrated in Table 8.
As seen in Table 8, the difference between the

cluster-based model (upper bound) and the lower
bound on the fully integrated model is very small.
In some cases (low initial inventories), the cluster-
based decomposition model results are virtually the
same as the lower bound. As the initial inventory
level increases, the gap between the cluster-based
model and the lower bound increases, however, the
gaps are still very small. Note that the approach
presented earlier in this section could be used to cal-
culate a lower bound for larger problem instances—
or even the entire country. However, such lower
bound results would be meaningful only if one also
solves the cluster-based problem for the larger prob-
lem (or the entire country) to obtain an upper
bound.

4.5. Operational Considerations and Insights for
Pharmaceutical Distribution in Developing
Countries
As mentioned in section 1.1, drug distribution and
transshipment between clinics within a centrally con-
trolled (government) distribution network in the
developing world has several distinguishing features
that contrast this environment with that studied in
the traditional transshipment literature. These fea-
tures include equity (ethical/fairness objectives), peri-
odic review with lengthy intervals due to time
consuming paper-based inventory calculation meth-
ods, geographically and temporally correlated and
variable demand including seasonality due to charac-
teristics of malaria.

We analyze these features by consider a cluster
with two clinics (Clinic 124 and Clinic 133 in our data-
set) from the eastern portion of central Malawi to the
northeast of the capital city of Lilongwe. Transship-
ment cost is $0.45 per unit (determined by distance
and transportation cost per km) and the shortage cost
is $20. Demand was taken from monthly case counts
at the two facilities, which had similar levels of
demand. We ran the experiments for a three-month
period, since it is unlikely that the clinics will deplete
their supplies during the first few months of the
malaria season and transshipment only has a major
effect when supplies run low at the clinics. When ana-
lyzing the system cost of each solution, we present an
average and a maximum cost over all reasonable
starting inventory levels at Clinics 124 and 133.
From these experiments, we have the following

findings: (i) The chase and balanced (so-called equita-
ble or ethical) policies are very close to optimal when
clinics are clustered with other clinics nearby. (ii) Sea-
sonality (predictable variability) is easily handled by
transshipment, unlike random demand variability,
which has a significant impact on system cost. (iii)
Transshipment is effective even with infrequent
review intervals.

4.5.1. Equitable/Ethical Transshipment. In deliv-
ering pharmaceuticals to patients in need, a prime
consideration is fair and equitable distribution. For
purposes of exposition we define two policies, chase
and balanced, which we term ethical policies. Both
policies always ship medication to fulfill demand if
supply exists within the cluster. The “chase strategy”
assumes that if there is shortage in one clinic in a
given period, the other clinic is able to (and will)
immediately transship available supply to satisfy that
demand in the same period that it occurs. In the sec-
ond scenario, we assume (as we do in the previously
described formulation of the MDP) that demand at
any clinic that cannot be satisfied immediately is lost
and a shortage penalty is incurred. The “balanced”
strategy will transship in each period to rebalance the
supply at the clinics in the cluster to observe the ratio
of expected demand at each clinic. For example, if
both clinics have the same expected demand over
future periods, then after transshipment in each per-
iod both clinics will have the same supply (	1). This

Table 8 The Lower and Upper Bound Calculations for a Set of 14 Clinics; Optimality Gap (%) is Calculated by Comparing the Lower and Upper
Bounds

Initial inventory 48 54 60 66 72 78 84 90 96

Lower bound 7053.2 7692.7 8336.1 8984.1 9638.6 10,292.9 10,955.4 11,627.1 12,309.3
Upper bound 7055.8 7693.5 8333.7 8976.5 9622.9 10,267.2 10,918.5 11,579.4 12,256.1
Gap% 0.0% 0.0% 0.0% 0.1% 0.2% 0.3% 0.3% 0.4% 0.4%
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strategy is based on the structural results from Thm. 1
and is also equitable since ensures both clinics receive
equal supply (relative to their expected demand) in
each period.
The result of these experiments shows that these

equitable solutions are very close to optimal. The cost
gap between the balanced (chase) solution and the
optimal solution was $12.3 ($7.7), or 0.6% (0.4%) of
the total cost, over a three-month time period on aver-
age across all instances of the initial inventory level,
which is the cost equivalent of 0.4 shortages over
three months. The maximum value of any instance
was $40.6 ($39.9), or 2.1% (2.1%) of the total cost,
which is equivalent to two shortages over three
months.
Figure 11 shows the gap between the equitable and

optimal solutions for both (a) the chase strategy and
(b) the inventory balancing strategy as a function of
initial inventory levels at Clinics 1 and 2. In both
strategies, there is almost no difference when the
inventory is initially distributed evenly between both
clinics, with the highest gap occurring when the initial
inventory level is highly imbalanced. This occurs
because both the chase and balanced ethics-driven
strategies attempt to restore the balance and will often
incur unnecessary shipping cost rather than anticipat-
ing future demands. Note that with the balanced
strategy, the cost gap rises again if initial inventories
are very high. This is because a completely balanced
inventory is not needed to satisfy all the future
demand, so inventory balancing incurs cost to trans-
ship supplies that will not be needed.

4.5.2. Demand Variability and Seasonality. Bec-
ause malaria is seasonal, demand for ACTs follows a
seasonal pattern (predictable variation) with variabil-
ity from season to season (random variation) as well
as geographically correlated demand. We compare
the actual demand pattern for Clinics 124 and 133
with demand patterns where we vary the predictable
and random variation as a counter factual. To capture
random variation, (i) we model demand as a Normal

random variable with the actual case counts repre-
senting the mean demand, and (ii) we vary the stan-
dard deviation to achieve different coefficients of
variation (CV = r/l): low (CV = 0.5), medium
(CV = 1), and high (CV = 2). We then took discrete
points on a grid of 	0, 0.25, and 0.5 standard devia-
tions to generate five different demand scenarios for
each period in the MDP. The intervals were chosen to
provide significant dispersion while avoiding nega-
tive demand scenarios. We also consider the interac-
tion between random and seasonal variation.
We find that, while random variation has a signifi-

cant impact on the objective, malaria demand season-
ality is handled well by transshipment. The average
(maximum) cost gap between the seasonal and flat
demand patterns was $14 ($58) over a three-month
time period on average, or 1.2% (4.9%) when com-
pared with the baseline cost, which is the cost equiva-
lent of 0.7 (2.9) shortages over three months.
Figure 12a shows that seasonality has little effect if
there are either high or low levels of initial inventory
in the cluster, with the largest impact occurring if
there are moderate levels of inventory. Figure 12c
demonstrates that random variability has a much lar-
ger impact on total cost than seasonality. Also observe
that as random variation increases, so too does the
impact of seasonality (black solid line vs. dashed gray
line).
The structure of the cost gap for low (CV = 0.5) vs.

high (CV = 2) random variation relative to initial
starting inventory at Clinics 124 and 133 is nearly
identical to the seasonality gap, but the magnitude is
much higher. The average (maximum) cost gap
between the low and high variation demand patterns
was $146 ($686), or 12% (57%) of the baseline cost,
over a three-month time period on average, which is
equivalent to 7.3 (34.3) shortages over 3 months. For
both seasonal and random variation, initial inventory
imbalance has little effect on the cost gap.

4.5.3. Periodic Review Interval. In the develop-
ing world, pharmaceutical inventories at distributing
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clinics are often taken using a paper-based system
rather than an electronic inventory. This process can
be time consuming, so for practicality it is better to
consider periodic system review rather than continu-
ous review. We study the impact of the transshipment
frequency by varying the length of the periodic
review interval over a three-month span and compar-
ing with a daily transshipment policy (which is simi-
lar to continuous review).
Figure 13a shows the cost gap going from daily

transshipment to once every ten days. There is little
impact if there is small or large amount of initial
inventory, and initial inventory imbalance does not
play a big role. The average (maximum) cost gap
between transshipping daily vs. once every ten days
was $71 ($267), or 3% (11%) of the baseline cost, over
a three-month time period on average, which is
equivalent to 3.6 (13.4) shortages over three months.
Figure 13b shows the cost gap for various transship-
ment intervals for high, medium, and low levels of
initial supply. The frequency of inventory review has
an average gap equivalent to only one extra shortage
each month. This is encouraging for developing coun-
tries where continuous or frequent review enabled by
electronic tracking is not likely to be available.

4.5.4. Insights and Policy Design. The results of
our numerical experiments yield some useful insights
for designing an effective distribution strategy. First,
the largest cost impact comes from year to year vari-
ability in demand. Better data collection and

forecasting can help reduce some of this uncertainty.
Second, transshipment frequency did not have a large
impact on cost, implying that transshipment can be
effective even with infrequent, paper-based data col-
lection methods prevalent in the developing world.
Third, the balanced policy is very close to optimal,
which indicates that it is a sound principle to balance
inventory between clinics at each transshipment per-
iod. Furthermore, if the initial inventories start out
balanced, then there is almost no difference between
the equitable inventory balancing policy and the opti-
mal policy. In addition to being an easily imple-
mented policy, inventory balancing is also likely to be
perceived as fair by all parties and near optimal.
These reasons suggest that inventory balancing (rela-
tive to average demand at each clinic) can be an effec-
tive transshipment policy within clusters.

4.6. Methods for Implementing Transshipment
Policies within a Clinic Cluster
In this section, we propose a practical operational pol-
icy for managing ACT distribution within a clinic
cluster. This policy establishes transshipment inven-
tory zones demarcated by the amount of inventory at
each clinic in the cluster. This could be easily imple-
mented in a paper-based chart/table. Determining
which zone the cluster currently falls within would
directly tell the clinics how many units to transship
and where. These inventory zones would consider the
total number of ACTs allocated to the cluster from the
strategic planning model as well as the “cost” of
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transshipment. Transshipment cost can include the
actual shipping cost and the willingness of clinics to
transship. If clinics are opposed to transshipping, this
cost would increase and the transshipment zones
would shrink. However, clinics are likely to under-
stand that if they are unwilling to transship, they also
will not receive transshipments when needed due to
the cluster level policy. This should encourage their
willingness to participate in a transshipment scheme.
In support of transshipment as a viable operational

policy, neighboring Zambia already has clinic-to-
clinic transshipment policies in place (see Mtonga
2010). According to Zambia’s Ministry of Health Stan-
dard Operating Procedure, Mtonga (2010), and inter-
views of a person familiar with the drug distribution
system in Zambia, ministry of health clinics use a
paper-based system to keep a monthly record of three
months average consumption and stock levels. This is
used to calculate restocking levels. At any point in
time, most clinics are in short supply of some drugs
and have a surplus of others. The district level health
office, which is in charge of 20–30 clinics, distributes
medications from the clinics that have surplus to the
clinics with shortages. Where all clinics have a low
inventory, the district level health office will typically
try to balance the shortages across clinics. Notably,
transshipment is already being practiced on an ad hoc
basis in Malawi itself as confirmed by conversations
with local professionals and Kiczek et al. (2009).
There is an opportunity to leverage this type of

stock count communication scheme. After the trans-
shipment areas are designed and agreed upon, the
district level office can use a decision support system
to guide periodic transshipment of ACTs. The district
office would periodically calculate stock levels for
each clinic within a cluster. This decision support sys-
tem could replace or augment the heuristic approach
currently being employed in Malawi and Zambia to
better serve the populations of each clinic cluster. Fur-
thermore, because the clinic clusters identified in sec-
tion 3.6 are generally small, the incentive to share
between them is greater because the populations
served by these clusters are all neighbors. It may be
possible to establish authority over each cluster to
manage the within-cluster transshipment as a method
to increase adoption.

5. Conclusion and Future Research

This paper addresses the challenging problem of dis-
tributing pharmaceutical products with seasonal
demand through a centralized public health delivery
system common to developing countries. Specific
challenges to distributing pharmaceuticals in coun-
tries such as Malawi include: under-developed trans-
portation infrastructure, spatially and temporally

uncertain demand, and limited financial resources.
This paper develops an analytical approach to effec-
tive distribution of malaria drugs, integrating strate-
gic level planning (where the planning horizon spans
through the malaria season) with a tactical (periodic)
level transshipment optimization. We do so by
decomposing the national network problem into
localized clinic clusters. This enables a tractable solu-
tion to the periodic review tactical MDP. Through
analysis of the MDP’s structural properties, we show
that a simple area-based transshipment policy could
easily support transshipment decisions, even in a
paper-based inventory management environment.
This decomposition heuristic was shown to be nearly
optimal when compared with a fully integrated opti-
mization that would be intractable at the national
scale. Furthermore, the clinic clusters identified in the
optimal solution of our strategic model can be a novel
mechanism to overcoming political concerns while
taking full advantage of the transshipment approach.
Using the strategic and tactical models, we

explored several unique features of medication distri-
bution in the developing world through a set of com-
putational experiments using compiled estimates of
facility level malaria counts for Malawi. Our results
suggest that strategic planning can reduce expected
ACT shortages by at least 16% while controlling trans-
portation costs. We further showed that the optimal
transshipment solution cost converges to the delayed
shipment solution cost as the clinic-to-clinic trans-
shipping becomes more expensive. However, trans-
shipment is more effective in dealing with poor
infrastructure and bad road conditions prevalent in
the developing world. Investigating other features of
medication distribution in the developing world, we
found that equitable polices are near optimal for geo-
graphically proximate clinic clusters, transshipment is
fairly robust to the length of the periodic review inter-
val that may be imposed by paper-based inventory
systems in the developing world, transshipment solu-
tions are robust to seasonality (as in the case of malar-
ia), and year to year variation has the largest impact
of any of the above factors.
A challenge regarding the successful application of

the methods offered is in the implementation itself.
Successful implementation would require proactive
efforts from the Ministry of Health of Malawi to
improve the current system. The problems of inade-
quate communication and transportation infrastruc-
ture could hinder full implementation. A low-cost,
cell phone-based reporting system such as SMS For
Life in Tanzania could at least overcome the former.
Given the easily transportable nature of malaria medi-
cations and the relatively short distance between facil-
ities, the latter might be overcome simply by sending
goods through public transport such as minibuses or
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by taking medications directly to facilities by bicycle.
It is difficult to foresee how these methods, which rely
on a connected and cooperative system of facilities,
could be utilized in the private sector portion of Mala-
wi’s healthcare landscape, because it represents a
patchwork of small sole-proprietorships which might
be hesitant to transship goods for free and even more
hesitant to allow other shops to take away potential
customers. It is possible that innovative mechanisms
enabling compensated transshipment might be devel-
oped, although that topic is outside the scope of this
paper.
In conclusion, the result of our integrated strategic

and tactical models is a tractable decision support sys-
tem approach that can guide government policy in
driving better health outcomes at a lower cost. Our
methods could be extended to fit pharmaceutical
products for other diseases such as diarrhea, dengue
fever, and influenza. Furthermore, the methods
offered here could be applied not only to public sector
supply chains but also to NGO or private sector sup-
ply chains for products which have seasonal and geo-
graphic demand heterogeneities.
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